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Aim
Simulate a realistic three-step microlensing
survey to analyse the precision vs cadence

guestion in the context of weak planetary
signals.

What is gravitational lensing?

The gravitational field of a ‘lens’ star moving
across the line of sight to a more distant
‘source’ star will temporarily deflect
additional light towards the observer. The
shape of the resulting light curve can
provide detailed information on the lens star.
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Caustic: the set of points for which the
solution to the lens equation results in
infinite magnification.
If the source star passes near or through a
caustic region, a planetary signal will be
present even if the entire lens system was
otherwise undetectable.
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This signal may be magnitudes greater than
the noise level even in cases where:

- The planet is beyond the snow line

- The planet is of order Earth-mass or below

Motivation

Better microlensing search strategies would
lead to a deeper understanding of
planetary populations, providing data for
theoretical work in:

Planet formation
Stellar system architecture
Astrobiology and habitable systems

Correlated noise

Noise in astronomical observations is rarely
entirely random or independent.
Atmospheric effects, detector noise, and
intrinsic stellar processes can drown out or
even mimic low S/N planetary signals in
microlensing light curves.

Computational methods

To generate model light curves, | used the
MulensModel Python package (1). OGLE and
KMTNet microlensing data was treated for
use as the correlated noise floor using
primarily B-spline interpolation.

Injecting model signals into real
microlensing survey data avoids the
assumptions of parameterised noise models.

1D linear interpolation of data
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To allow for ‘real-time’ simulation, the OGLE
early warning system (2) was simulated via a
control algorithm. Two consecutive points
deviating by more than 2-o0 on the same side
of the model triggered an anomaly
monitoring mode. Five points meeting these
criteria constituted a planetary signal
detection.
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Results

_ In cases of limiting magnitude across a

wide range of planetary parameters,
millimagnitude precision generally led to
the highest detection efficiency.

_ For lunar mass objects, source size

generally dictates higher imaging cadence
requirements.

_Results indicate that a variable survey

strategy may produce highest detection
rates and reduce survey bias.
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